Analysis of Passive Vibration Measurement and Data Interrogation Issues in Health Monitoring of a HMMWV Using a Dynamic Simulation Model

D. Adams, Purdue University

J. Gothamy, P. Decker, D. Lamb, D. Gorsich, TARDEC

including suggestions for reducin	ould be aware that notwithstanding	quarters Services, Directorate for I	nformation Operations and Rep	oorts, 1215 Jefferson D	of this collection of information, avis Highway, Suite 1204, Arlington with a collection of information if it	
1. REPORT DATE 24 MAR 2008		2. REPORT TYPE N/A		3. DATES COVI	ERED	
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER				
	ement and Data In MWV Using a Dyn		5b. GRANT NUMBER			
Simulation Model	5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S) D. Adams; J. Gothamy; P. Decker; D. Lamb; D. Gorsich				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000				8. PERFORMING ORGANIZATION REPORT NUMBER 18705		
9. SPONSORING/MONITO	AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC			
		11. SPONSOR/MONITOR'S REPORT NUMBER(S) 18705				
12. DISTRIBUTION/AVAI Approved for pub	ILABILITY STATEMENT lic release, distribut	tion unlimited				
13. SUPPLEMENTARY NO Presented at SAE contains color image	2008 World Congre	ess, April 14-17, 20	08, Detroit, MI, U	U SA, The ori	ginal document	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC		17. LIMITATION	18. NUMBER OF PAGES	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	12	RESPONSIBLE PERSON	

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Motivation

HMMWV comes in over a dozen variants:

- Some heavier than others;
- Variation in loading;
 - Durability of suspension,
 - Frame and cross members.

 A method is desirable through which passive vibration response is used to detect faults.

ssues

Issues with using vibration for fault detection:

- Which frequency range?
- Sensors, how many and where to place?
- Damage variety (suspension, frame, etc.).
- Non-stationary excitation due to terrain:
 - L/R wheels in phase,
 - L/R wheels out of phase,
 - Must identify operating regime first.
- Variability from vehicle-to-vehicle.

Approach

87 degree of freedom dynamic model:

$$[\mathbf{M}]\{\ddot{\mathbf{x}}\} + [\mathbf{C}]\{\dot{\mathbf{x}}\} + [\mathbf{K}]\{\mathbf{x}\} = \{f\}$$

- x and z forcing functions;
- Free response analysis;

$$[M]^{-1}[K]\{X\} = \lambda \{X\}$$

Force response analysis;

$$\frac{d}{dt} \begin{cases} \{x\} \\ \{\dot{x}\} \end{cases} = \begin{bmatrix} [0] & [I] \\ -[M]^{-1}[K] & -[M]^{-1}[C] \end{bmatrix} \begin{cases} \{x\} \\ \{\dot{x}\} \end{cases} + \begin{bmatrix} [0] \\ [M]^{-1} \end{bmatrix} \{f\}$$

$$= [A] \begin{cases} \{x\} \\ \{\dot{x}\} \end{cases} + [B] \{u\}$$

Results (Free Response)

Suspension, cross member, and frame damage:

- Low, high, and broad frequency changes,
- 40-50% damage results in 10% variation.

Results (Free Response)

Modal deflection shapes show that:

- Sensors on F/R cross members are optimal,
- Sensors on wheel are suboptimal (filtering).

Results (Force response)

Faults in suspension, frame, cross members are:

- detected in different frequency ranges;
- best detected for certain terrains (modes).

Technical Barrier

HMMWV forced response varies significantly:

 Without regime recognition, fault detection is difficult using conventional methods.

Proposed Approach

Method to control vibration input for diagnosis:

- Timing, and
- diagnostic cleats.

 "Weigh station" approach will target certain faults.

Experimental Setup

Pickup truck with 2 vertical accelerometers:

F/R control arm and F/R frame.

Experimental Results

Sway bar link loosened to 400, 200, 0 lb-in:

- Low freq insensitive to fault;
- Both sensors sensitive from 2.6-3.9 kHz.

Conclusions

Fault detection using vibration data is feasible:

- Free response (modal) changes depend on frequency range;
- Forced response changes depend on regime;
- To control variability in fault indicators, diagnostic cleat approach is proposed;
- Experiments indicate fault in stabilizer bar link can be detected amidst variability in data.

